ITC 3106

▶︎
all
running...

Number Groups

N={0,1,2,...}\mathbb{N} = \{0,1,2,...\} [natural numbers]

Z={mnm,nN}\mathbb{Z} = \{m-n \mid m,n \in \mathbb{N}\} [integers]

Q={m/nm,nZ,n0}\mathbb{Q} = \{m/n \mid m,n \in \mathbb{Z}, n \neq 0\} [rational numbers]

R\mathbb{R} [real numbers]

C\mathbb{C} [complex numbers]

for which
NZQRC\mathbb{N \subset Z \subset Q \subset R \subset C}

Real Numbers R\mathbb{R}

Algebraic Properties:

Order Properties:

R\mathbb{R} has an order relation < to classify each number as positive, negative, or zero, based on their relation to 0. These properties interact with ++ and \cdot to manipulate inequalities.

Completeness Axiom:

The implication that there are no missing points in the real number line, unlike the rational set which excludes instances of irrational numbers.

Operational Axioms:

  1. Only universal quantifiers, for all:
    (aR)(bR) a+b=b+a(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}) \space a+b=b+a
  2. Contain an existential quantifier, exists, to prove the existence of something:
    (0R)(aR) a+0=0+a=a(\exists 0 \in \mathbb{R})(\forall a \in \mathbb{R}) \space a+0=0+a=a

Rings

A structure (R,+,)(R,+,\cdot) is a ring if RR is a non-empty set and ++ and \cdot and binary operations:
+:R×RR,(a,b)a+b+: R \times R \to R, \quad (a,b) \mapsto a + b
:R×RR,(a,b)ab\cdot: R \times R \to R, \quad (a,b) \mapsto a \cdot b
such that:

Addition:

  1. associativity: (a,b,cR)a+(b+c)=(a+b)+c(\forall a,b,c \in R) \quad a+(b+c)=(a+b)+c
  2. zero element: (0R)(aR)a+0=0+a=a(\exists0 \in R)(\forall a \in R) \quad a+0=0+a=a
  3. inverses: (aR)(aR)a+(a)=(a)+a=0(\forall a \in R)(\exists -a \in R) \quad a+(-a)=(-a)+a=0
  4. commutativity: (a,bR)a+b=b+a(\forall a,b \in R) \quad a+b=b+a

Multiplication:

  1. associativity: (a,b,cR)a(bc)=(ab)c(\forall a,b,c \in R) \quad a \cdot (b \cdot c) = (a \cdot b) \cdot c

Addition and Multiplication:

  1. (a,b,cR)a(b+c)=ab+ac(\forall a,b,c \in R) \quad a \cdot (b+c) = a \cdot b + a \cdot c \quad and (a+b)c=ab+bc(a+b) \cdot c = a \cdot b + b \cdot c

Implies Operation p    qp \implies q

pp qq p    qp \implies q
F F T
F T T
T F F
T T T

False can imply true, but true will never imply false.